Two approximate algorithms for model counting
نویسندگان
چکیده
منابع مشابه
Efficient Algorithms for Approximate Triangle Counting
Counting the number of triangles in a graph has many important applications in network analysis. Several frequently computed metrics like the clustering coefficient and the transitivity ratio need to count the number of triangles in the network. Furthermore, triangles are one of the most important graph classes considered in network mining. In this paper, we present a new randomized algorithm f...
متن کاملAlgorithms for Propositional Model Counting
We present algorithms for the propositional model counting problem #SAT. The algorithms utilize tree decompositions of certain graphs associated with the given CNF formula; in particular we consider primal, dual, and incidence graphs. We describe the algorithms coherently for a direct comparison and with sufficient detail for making an actual implementation reasonably easy. We discuss several a...
متن کاملAlgorithms for Propositional Model Enumeration and Counting
A large number of practical applications rely on effective algorithms for propositional model enumeration and counting. Examples include knowledge compilation, model checking and hybrid solvers. Besides practical applications, the problem of counting propositional models is of key relevancy in computational complexity. In recent years a number of algorithms have been proposed for propositional ...
متن کاملTwo Approximate Minkowski Sum Algorithms
We present two approximate Minkowski sum algorithms for planar regions bounded by line and circle segments. Both algorithms form a convolution curve, construct its arrangement, and use winding numbers to identify sum cells. The first uses the kinetic convolution and the second uses our monotonic convolution. The asymptotic running times of the exact algorithms are increased by km logm with m th...
متن کاملEfficient Negative Selection Algorithms by Sampling and Approximate Counting
Negative selection algorithms (NSAs) are immune-inspired anomaly detection schemes that are trained on normal data only: A set of consistent detectors – i.e., detectors that do not match any element of the training data – is generated by rejection sampling. Then, input elements that are matched by the generated detectors are classified as anomalous. NSAs generally suffer from exponential runtim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2017
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2016.04.047